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Abstract

Future space-based, remote sensing systems will have data transmission requirements that

exceed available downlinks, necessitating the use of lossy compression techniques for multispec-
tral data. In this paper, we describe several algorithms for lossy compression of multispectral

data which combine spectral decorrelation techniques with an adaptive, wavelet-based, image

compression algorithm to exploit both spectral and spatial correlation. We compare the perfor-

mance of several different spectral decorrelation techniques, including wavelet transformation in

the spectral dimension. The performance of each technique is evaluated at compression ratios

ranging from 4:1 to 16:1. Performance measures used are visual examination, conventional dis-
tortion measures, and multispectral classification results. We also introduce a family of distor-

tion metrics that are designed to quantify and predict the effect of compression artifacts on multi-

spectral classification of the reconstructed data.

l, lnl:rg0uction

In space-based, remote sensing systems, the limited ability to transmit sensor data to the
ground places a major constraint on system feasibility. Available relay systems and direct down-

link capabilities are not scaled to the data-transmission requirements for wide-area, high-resolu-

tion remote sensing systems envisioned for sensor systems of the year 2000 and beyond. Assum-

ing data rates on the order of gigabits/sec for an advanced multispectral remote sensor system

and a 600Mbps ATDRSS relay link, compression ratios on the order of 5-15:1 are required to

transmit sensor output in real time. Since lossless compression techniques are not expected to
achieve average compression ratios greater than 2.5:1, there is clearly a need to develop lossy

compression techniques for multispectral data.

Previous work in the area of lossy multispectral compression has investigated a variety of

different techniques. Baker and Tse 1 evaluated the performance of predictive coding, transform

coding, and several vector quantization (VQ) techniques. In this work, only spectral correlations
were exploited. The majority of other VQ techniques reported use VQ to exploit spatial correla-

tions, and use predictive techniques (linear 2, nonlinear 3, feature 4, and polynomial 5) to exploit

spectral correlations. In the wavelet transform-based techniques that have been reported6, 7, a

Karhunen-Loeuve (KLT) 8 transform or an approximation to it is performed prior to wavelet

transformation to remove spectral redundancy in the data.

In this work, we use the wavelet transform in combination with several spectral decorre-

lation techniques to exploit both spectral and spatial correlation. Although the KLT is the opti-

mum transform for the removal of spectral redundancy, it has historically been considered too

computationally complex for real-time, on-board spacecraft implementation. In a previous pa-

per 9, we studied the performance of several prediction schemes to remove spectral redundancy.

In this paper we examine the use of the wavelet transform to remove both spectral and spatial re-
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dundancy. Both the prediction schemes and wavelet transform techniques are amenable to real-

time implementation.

In addition, of greatest importance for multispectral remote sensing systems is the re-

quirement that the compression process minimize the degradation of spatial and spectral fidelity

to ensure that data exploitation is not compromised. Therefore, evaluation of lossy multispectral

data compression techniques should include data exploitation simulations. However, comparison
of exploitation performance is time consuming and is often impractical for compression algo-

rithm development or parameter optimization. Conventional distortion measures (such as MSE

or SNR) are not application sensitive and often do not accurately measure the effect of distor-

tions on data exploitation. What is desired are quantitative degradation measures for exploitation

algorithm performance characterization and prediction.

To address the need for meaningful image quality metrics, we introduce a set of metrics
designed to quantify and predict the effect of compression artifacts on the performance of multi-

spectral classification algorithms. These metrics, known as the Spectral Covafiance Measures,

are derived from the covariance matrices of the original, decompressed, and/or residual

multispectral images. The goal of such metrics is to provide consistent predictive relationships

between the quantitative distortion measure and a given application, such as Maximum

Likelihood Multispectral Classification. Results are provided for the most promising of these
measures, known as the Sum Delta Covariance Measure.

We simulate the performance of each compression algorithm on four multispectral (MS)

images at compression ratios ranging from 4:1 to 16:1. An MS image consists of 8 co-registered

512x512 images, each representing a spectral band ranging from the Visible (Band 1) to the Near
IR (Band 8). Performance measures used to evaluate the decompressed imagery are visual ex-

amination, conventional distortion measures (Mean Square Error), the Sum Delta Covariance

Measure, and the results of Maximum Likelihood multispectral classification. We use these
measures to determine the best spectral decorrelation technique, and to evaluate how well the

Sum Delta Covariance Measure predicts multispectral classification performance.

The major contributions of this paper are simulation and performance evaluation of sev-
eral different spectral decorrelation techniques, and preliminary results on the correlation be-

tween the Sum Delta Covariance Measure and Maximum Likelihood multispectral classification

performance.

2. Compression Algorithm Description

A block diagram of the compression algorithms evaluated in this paper is shown in Fig. 1.

The compression algorithms consist of a spectral decorrelation stage, a wavelet transformation

stage, a rate allocation stage, a quantization stage, and an entropy coder stage. Each of these

stages is described below.

2.1 Spectral Decorrelation Stage
We evaluated six different spectral decorrelation techniques: 1) Spatial-only (i.e., no

spectral decorrelation), 2) Karhunen-Loeuve transform (KLT), 3) Prediction with Two Reference

Bands, 4) Band-to-band successive subtraction, 5) One dimensional wavelet transformation, and

6) Three dimensional wavelet transformation. In the Spatial-only technique, no spectral de-

correlation is performed. Our purpose in evaluating this technique is to determine how much

compression improvement (as measured by image quality and exploitability) can be obtained by
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Fig. 1 Block Diagram of The Multispectral Compression Algorithms.

exploiting band-to-band spectral correlation. We also included the KLT in our evaluations so

that its performance could be used as a reference to evaluate the performance of the other
spectral decorrelation techniques.

Techniques 3 and 4 are differential schemes, in which the pixel values of a spectral band

are replaced by the difference between the pixel values of the band and a predicted pixel value.

In both schemes, the predicted value is obtained by using the value of a pixel at the same loca-

tion, but in a different spectral band (known as the reference band). The motivation for these

techniques is that because of spectral correlation, the predicted pixel value should be a reason-
able estimate of the actual pixel value. The resulting differential band will have a lower entropy

than the original band and will, therefore, be easier to compress. In the Two Reference Band ap-

proach (Technique 3), the predicted values for Bands 1, 2, and 4-6 are obtained by using the val-

ues of Band 3, and for Band 8, the predicted values are those of Band 7. In this technique, the

values of the reference bands (Bands 3 and 7) are not changed. In the Successive subtraction ap-
proach (Technique 4), the reference band is just the next adjacent spectral band. For example,
the reference band for Band 8 is Band 7, the reference band for Band 7 is Band 6, etc.. In this

technique, the pixel values of Band 1 are not changed. To improve the performance of these two

techniques, a normalization is performed prior to subtraction: the mean of each band is sub-

tracted and the band variances are made identical by multiplication by a scaling factor.

In Techniques 5 and 6, we use the wavelet transform as a spectral decorrelation tech-

nique. In Technique 5, we perform a one dimensional wavelet transform on each multispectral

pixel, prior to performing a two dimensional wavelet transform on each decorrelated band. In
Technique 6, we perform a three dimensional wavelet transform to simultaneously remove both

spectral and spatial redundancy. In both techniques, the wavelet filters used in the spectral

dimension are the Haar (or Daubechies 1) filters. We use these filters because their

implementation requires only two filter taps, which, with 8 spectral bands, permits a three level

transform in the spectral dimension. As in the prediction schemes described above, prior to
performing the wavelet transform, we subtract the mean of each spectral band and make the

variances of the bands equal - in this case equal to the maximum variance of the bands.

All of the spectral decorrelation techniques mentioned above are reversible - the original

pixel values can be obtained from the spectrally decorrelated values. With the possible exception

of the KLT, these techniques are also amenable to real-time implementation since they involve

relatively few computations per multispectral pixel.

2.2 Wavelet Transformation Stage

After the spectral decorrelation stage (except in Technique 6 above), we apply a two-
dimensional discrete wavelet transform (DWT) to the decorrelated spectral bands to reduce
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pixel-to-pixel spatialredundancy.The wavelettransformis asubbanddecomposition,in whicha
bankof bandpassfilters splitsan imageinto anumberof separate,spatialfrequencycomponents,
called subbands.The motivation for this decompositionis that the subbandscan beencoded
moreefficiently than theoriginal image. Typically, differentbit ratesandevendifferent coding
techniquesare usedfor each subbandto take advantageof the statistical propertiesof the
subbandandto controlor shapethecodingerrorsin anoptimal fashion.

Waveletsarearecentlydevelopedclassof subbandfilters in which theimpulseresponse
of thefilters areorthogonalto oneanotherandareall scaledversionsof a singlefunction known
asthewavelet. Thesubbandsproducedby thetransformhavegoodredundancyremovalproper-
ties, areorientation specific, andcontainmultiresolutioninformationon both the locationand
scaleof features,particularly edgesor discontinuitiesin the image10. The ability to efficiently
representimagefeatures(particularly edges)is oneof thereasonsthat wavelet-basedcompres-
sion schemesprovidereconstructedimageswith goodvisualquality. The2D DWT usedin this
paperis equivalentto apyramidsubbanddecomposition,wherethebandwidthsof the subbands
arerelatedby powersof two andrepresentanoctave-basedfrequencydecomposition.Thetrans-
form is implementedusingtwo finite impulseresponsefilters which areappliedrecursivelyto
the lowestfrequencysubband10. In thispaper,the2D wavelettransformationstageconsistsof a
6-levelDWT, usingtheDaubechies9-7biorthogonal,linearphasefiltersI 1. Symmetricedgere-
flection is usedto avoidthe introductionof discontinuitiesdueto imageboundaries12.

In our implementation of a three dimensional wavelet transform, we use the Haar filter in

the spectral dimension and the Daubechies 9-7 biorthogonal filters in the spatial dimensions,
with symmetric edge reflection at the data boundaries in all three dimensions. The 3D transform

consists of 6 levels: 3 levels performed on all three dimensions, and 3 levels performed only on
the spatial dimensions.

2.3 Rate Allocation Stage

The purpose of the rate allocation stage is to select the rate (in bits/coefficient) of the

wavelet subbands so that the desired compression ratio is achieved with minimum distortion in

the reconstructed images. The general approach is to allocate higher rates to subbands that con-

tain more information. Subbands allocated higher rates will be quantized with less distortion or

error (the difference between the coefficient value and its quantized value). In a previous pape r9,
we examined the performance of four different rate allocation techniques. In three of these

techniques, rate allocation is performed in two stages. In the first stage which occurs after spec-

tral decorrelation, rate is allocated among the decorrelated bands in the spatial domain. The

decorrelated bands are then treated as separate, independent images in the second stage, which

allocates rate among the different wavelet subbands. In the fourth technique, all of the spectral

bands are treated as a single dataset and rate allocation is performed in a single stage after spec-

tral decorrelation and wavelet transformation. Our simulation results indicate that the fourth ap-
proach has the best performance. Use of any of the two stage rate allocation techniques results in

significantly poorer performance. Thus, we use the single stage technique exclusively in this
analysis.

After spectral decorrelation and wavelet transformation, we determine a bit rate/subband

using the following formula which allocates rate based on the variance of the subband:
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Ri =0+2-1°g2 'f s -- I/n , (1)

where Ri is the allocated rate for subband i, 0"7 is the variance of subband i, e is the desired

average rate for the dataset, S is the number of subbands, Nk is the number of coefficients in

subband k, and N is the total number of coefficients in the dataset (equal to the number of bands

times the number of pixels in the band). For spectral decorrelation Techniques 1-5, the number

of subbands S is equal to 152 (8 spectral bands times 19 subbands/spectral band) and for
Technique 6, the number of subbands is 31.

Eq. 1 is the rate allocation formula found in [13] that we have modified to account for the

different sizes of the wavelet subbands. One problem with this formula is that if the variance of
a subband is too small compared to the geometric mean of all of the subband variances, then this

formula will result in a negative rate for the subband. In this case, we remove from Eq. 1 those

subbands allocated a negative rate in the previous calculation and recalculate the Ri. This process

generally requires at most 2-3 iterations to converge. The subbands that have been removed are
not coded. All of the coefficient values in these subbands are set to zero.

2.40uantization Stage

The quantization stage consists of two parts: stepsize selection and uniform quantization.
The purpose of the stepsize selection process is to determine a quantizer stepsize for each sub-

band so that the quantized subband will be entropy coded at the allocated bit rate. We use a

search algorithm that iteratively selects a stepsize, quantizes the subband, and then measures the

first order entropy of the quantized subband to determine if the quantized subband meets its allo-

cated rate, which indicates the suitability of the selected quantizer stepsize. After a stepsize is
selected for each subband, the wavelet coefficients of the subband are quantized by dividing the

coefficient value by the stepsize and rounding to the nearest integer.

Currently the iterative search algorithm used to determine quantizer stepsize is too com-
putationally intensive for real-time implementation. A future effort is to replace the iterative

search algorithm with a table lookup approach, developed through training, that selects quantizer

stepsize based on the desired rate and variance of the subband.

2.5 Entropy Coding Stage

In the entropy coding stage the quantized wavelet coefficients are mapped into a set of
variable-length code words. More frequently used values are mapped to short length code words

and less frequently used values to long code words. Compression is achieved because the aver-

age number of bits to represent the output codewords is less than the average number of bits used
to represent the quantized wavelet coefficients.

Our entropy coder is a hybrid that combines two well known techniques: the Rice

coder 14 and an arithmetic coder 15. We use these two techniques in a complementary fashion.

The Rice coder works well on short sequences and on sequences that have a first order entropy

greater than 2bits/symbol. The arithmetic coder works well on long sequences that have low first

order entropies (i.e., < 2bits/symbol). In coding each subband, we select the technique based on

the size of the subband and its allocated bit rate. Performance simulations of this hybrid entropy
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coder demonstratecoding efficiencies within 5-10% of information theoreticalperformance
(basedon first order entropy),which is significantly betterthantheperformanceof either tech-
niquealone.

2.6 Algorithm Summary_
In Table 1, we list the different compression algorithms evaluated in this paper. For each

algorithm in the table, we indicate the spectral decorrelation technique that is used. We also as-

sign to each technique a short alpha-numeric symbol that we use to identify the specific tech-

nique in the graphs and tables of this paper.

Algorithm SymboI

Spatial-only
KLT

Spectral Decorrelation Technique
None

Karhunen-Loeuve Transform

PRED 1 Two Reference Band Predictor

PRED2 Successive Subtraction Predictor

WV 1D 1D Wavelet Transform

WV3D 3D Wavelet Transform

Table 1. Multispectral Compression Algorithms

3. Pcrfgrmance Measures and Methodology

The goal of the compression schemes studied in this paper is to achieve a desired com-

pression ratio with minimum distortion in the reconstructed MS image. One of the most com-
mon criteria used to measure distortion is the Mean Square Error (MSE):

1 No N . _2
MSE

NNa i=1 j=_
(2)

where N is the number of pixels in the spectral band, NB is the number of spectral bands in the

dataset, X 0 is the original pixel value of pixel j in Band i and _',j is the pixel value after com-

pression and decompression. We also measure the MSE for individual spectral bands. To calcu-
late the MSE/band, we use an equation similar to Eq. 2, except that the summation is only over

the pixeis in the band.

Another criteria that we use to evaluate performance is a visual comparison between the

reconstructed and original spectral bands of the MS images. We also viewed error images of the

individual bands to study the types of errors introduced. The error images are constructed by

taking the difference between the original and the reconstructed image and then scaling the errors

to be in the range of 0-255 for display.

3.1 Spectral Covariance Measures

As a parallel effort to compression algorithm development and evaluation, we are inves-

tigating application specific distortion metrics. The objective of such a metric is to provide a

predictive mapping between metric value and the change in performance of specific data ex-

ploitation applications after any process which introduces distortion to data, such as loss-y com-

pression. If such a relationship can be identified consistently between the metric and the applica-

tion, then it will only be necessary to compute the metric to predict how the distortion process

will affect the application. Ideally, such a metric should be straightforward to calculate and is
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particularlyusefulif it correlateswell to severalapplications(albeitperhapsvia different predic-

tive relationships).

For multispectral applications we have developed and investigated a set of measures

called Spectral Covariance Measures. These measures are derived from the spectral covariance

matrices of the original, decompressed and/or residual images. Design of these metrics is moti-

vated by the fact that spectral principal components are the basis of many spectral feature extrac-
tors and that spectral covariance describes the degree of linear correlation between bands. An ad-
ditional motivation is that some common classifiers, such as Mahalanobis Distance and Maxi-

mum Likelihood Classifiers, explicitly rely on spectral covariance to perform classification. We
have investigated whether predictive relationships exist between these metrics and Maximum

Likelihood Classifier performance. The most promising of the metrics, with respect to Multi-

spectral Classification, is called the Sum Delta Covariance (SDC) metric. The SDC metric is

computed as follows:

SDC = _1Cov_original_s -Cov_ compressed,il, (3)
band.pains

Ij

where all covariances are normalized. In this work we compare how well MSE and the SDC
measure predict multispectral classifier performance.

3.2 Multispectral Classification Methodology

The fourth criteria used to evaluate the performance of the compression algorithms is to
compare how well the compressed/decompressed imagery can be classified compared to the

original multispectral (MS) images. A signature database defines the statistical characteristics of

the proposed classes and is generated via training with representative MS data. The signature

database is subsequently used by the MS classifier in conjunction with a decision rule to classify

MS pixels. In general training may be supervised or unsupervised. For this study, unsupervised

training is performed, due to lack of available ground truth. Both training and MS Classification

are performed within the ERDAS GIS (Geographic Information Systems) and Image Processing

environment. Unsupervised training is performed by the ISODATA clustering algorithm, and

actual MS classification is performed using a Maximum Likelihood Decision Rule. Visual

examination and measured signature divergence are used to iteratively edit and merge signatures
derived from the original training images, yielding the final signature database.

In general we would like to use as much training data as possible to develop the signature

databases, however for this effort we have a limited set of calibrated, registered MS images rep-

resenting the spectral bands of immediate interest (Visible to Near IR). Specifically, this analy-

sis is based upon 4 calibrated, co-registered MS images: 2 from each of 2 MS bandsets. These
datasets are referred to as Airfield 1, Airfield 2, Urban 1 and Urban 2. Thus two signature

databases are required for this analysis - one for each bandset. Eight spectral.bands from each
image were used. For this initial work, all eight bands were used for MS Classification. Future

tasks will identify band subsets best suited for specific classification schemes and perforrr[ com-

pression and exploitability analysis on these selected band subsets.

Each original MS image contains approximately 1000 X 700 MS pixels. For compres-

sion analysis, a 512X512 MS subimage was extracted from each image. The original (1000 X

700) images were used for classifier training. Thus each MS bandset's signature database is de-

rived from two 1000 X 700 MS images. The image calibration data is used to "radiance normal-

75



ize" the data prior to training, such that within an MS bandset, the mapping from digital count to
radiance is consistent.

In order to evaluate the impact of several compression algorithms on MS classification,

each of the normalized uncompressed 512X512 MS images is submitted to the MS Classifier,

using the appropriate signature database. This classification is treated as "truth" and becomes the
basis for comparing classification results after compression. Data compression is performed on

imagery which has not been radiance normalized, because raw sensor data which is input to an
on-board compressor is typically unnormalized. After reconstruction, the compressed MS image

is normalized using the same calibration and normalization factors which have bee_ applied, to
the corresponding uncompressed MS image. This data is then submitted to the MS Classifier,

using the appropriate signature database. The number of correctly classified pixels after

compression is computed, yielding the percent correct classification results. This is done for each

compression algorithm, at each compression ratio, for each 512X512 image.

4. Simulation Results

4.1 Compression Algorithm Performance

In Fig. 2 we compare the performance of the different spectral decorrelation techniques.
In these two graphs, we display Mean Square Error as a function of compression ratio. Fig. 2a
contains the results for dataset Airfield 1 and Fig. 2b contains the results for dataset Urban 1.

From both of these graphs, it is clear that the KLT spectral decorrelation technique results in the

best (i.e., lowest MSE) performance. For both datasets, the performance of the Two Reference

Band technique and the 1D wavelet technique are comparable and have performance close to that

of the KLT technique. For the Airfield 1 dataset, the performance of the Successive Subtraction
technique and 3D wavelet technique are comparable and are better than not exploiting spectral

decorrelation (the Spatial-only approach). However, in the Urban 1 dataset, the Successive

Subtraction technique is actually worse than the Spatial-only approach, while the 3D wavelet

technique still results in better performance.
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Fig. 3. Multispectral Classification Results.

(a) Dataset Airfield 1 and (b) Dataset Urban 1.

In Fig. 3 we show the results of performing multispectral classification on the recon-

structed MS images. In both Figs. 3a and 3b, we display the percentage of MS pixels that are
correctly classified as a function of compression ratio. As in Fig. 2, the KLT spectral decorrela-

tion technique results in the best performance for both datasets. For dataset Airfield 1, the pre-

diction schemes have similar classification performance, and both prediction techniques perform

better than either the 1D or 3D wavelet-based techniques, which is a different relative perfor-

mance ranking than the ranking obtained by comparing MSE performance. For dataset Urban 1,

the classification performance of the 1D wavelet technique is almost as good as the KLT and
significandy better than the prediction techniques or the 3D wavelet technique.

The relatively poor performance of the three dimensional wavelet transform approach

may be due to the fact that there is a significantly smaller number of subbands (approximately a

factor 5) in this approach than in any of the other approaches. The smaller number of subbands

means that the subbands are larger than in the other approaches and, therefore, the bit rate
allocation and quantization are more coarse. In other words, because the other techniques group

the transform coefficients into a larger number of smaller groups, there is more flexibility in rate

allocation and quantizer design. This additional flexibility translates into better performance.

4,2 Sum Delta C0variance vs. MSE Metric Performance Comparison

Because multispectral classification is applied to radiance normalized data, all MSE val-

ues used for metric evaluation are computed after radiance normalization of original and com-

pressed imagery. Similarly, SDC is computed from radiance normalized data. Fig. 4 illustrates

SDC vs. CR and MSE vs. CR for each compression algorithm for Airfield I. When compared to
Fig. 3a we see that neither SDC nor MSE consistently corresponds to the relative performance of

the compression algorithms (as defined by classification accuracy).

In order to assess whether SDC shows promise as the basis of a predictive metric of clas-

sification accuracy, we have examined the correlation of both SDC and MSE to classification
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(c) SDC vs. Classification and (d) MSE vs. Classification for Urban 1

accuracy. This is illustrated in Fig. 5 for each of the individual images. In these and the follow-

ing figures, results are derived from 11 wavelet-based compression algorithms, including the six

algorithms described in this paper and five algorithms described in a previous paper 9. For any

given image, SDC has only a slightly higher linear correlation to classification accuracy than
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MSE. More important however, is what occurs when this correlation is examined over all im-

ages from both bandsets, as is illustrated in Fig. 6. When analyzed over both bandsets SDC has a

notably higher correlation to classification accuracy than MSE. It appears that SDC is less sen-
sitive than MSE to scene, sensor, and spectral variations. Thus it is possible that a refinement of

the SDC measure will provide a useful predictive measure of classification accuracy.
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,5, Conclusions

In this paper, we have evaluated the performance of a number of wavelet-based multi-

spectral compression algorithms. All of the algorithms use the wavelet transform to reduce

pixel-to-pixel spatial redundancy. The difference in the compression algorithms lies in the tech-

niques used to reduce band-to-band spectral correlation. Simulations of each of the compression
algorithms was performed on four 8-band muhispectral images at four different compression ra-

tios. Visual examination, Mean Square Error, the Sum Delta Covariance Measure, and the results

of multispectral classification of the decompressed images were the criteria used to evaluate the

performance of the different algorithms.

As expected, the results of the simulations indicate that the Karhunen-Loeuve transform

is the best spectral decorrelation technique. Good performance is obtained with either a one di-

mensional spectral wavelet transform or a simple prediction scheme in which the pixel values of

one of two bands is used to predict the pixel values in the remaining spectral bands. The perfor-
mance of the three dimensional wavelet transform and that of the Successive subtraction predic-

tion scheme were, in general, better than not exploiting spectral redundancy, but were signifi-

cantly poorer than the other spectral decorrelation techniques.

We have implemented and evaluated a spectral covariance based metric called the Sum
Delta Covariance. This metric correlated to multispectral classification accuracy more strongly

than MSE and appears to be less sensitive than MSE to scene, sensor, and spectral variations.
Thus this measure shows promise as the basis of a metric which can be used to predict

multispectral classification accuracy.

In future directions of this research, we will concentrate on three areas: 1) development

of improved compression algorithms, 2) an examination of sensor systems issues and their im-
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pacton compression algorithm design and performance, and 3) development of improved com-

pression evaluation techniques. Our focus in developing better compression algorithms is to

evaluate different quantization schemes. For each processing stage we will tune algorithmic pa-

rameters and approaches for real-time on-board sPacecraft implementation. Sensor systems is-

sues that we plan to investigate are the effects on compression performance due to spectral band
misregistration and detector nonuniformities. In the area of compression evaluation techniques,

we plan to refine our classification techniques, the spectral covariance measures, and develop

other application-specific image quality measures.
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